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Strange behavior of a passive scalar in a linear velocity field
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Damping (or growth rates of a typical realization, mean-field and high-order correlation functions of a
passive scaldie.g., a number density of partic)esdvected by a linear velocity fields are estimated. It is shown
that all statistical moments higher than the first moment and a typical realization of a passive scalar without an
external pumping decay for both laminar and random incompressible linear velocity fields. Strong compress-
ibility of a laminar linear velocity field can result in a growth of a typical realization and the high-order
moments of a passive scalar. It is demonstrated that for a laminar compressible linear velocity field the flux of
particles from the infinity does not vanish and the total number of particles is not conserved. For a random
compressible linear velocity field a typical realization decays whereas the high-order moments of a passive
scalar can grow. Comparison of the obtained results with those for dynamics of a passive scalar advected by a
homogeneous isotropic and compressible turbulent flow with a given longitudinal two-point correlation func-
tion F=1-r? is performedwherer is the distance between two points measured in the units of the maximum
scale of turbulent motions
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[. INTRODUCTION sive scalar in linear velocity field cannot be considered as a
general and universal phenomenon. Comparison of the ob-
Fluctuations of a passive scalar advected by a turbulertgined results with those for dynamics of a passive scalar
velocity field were studied in a number of publicaticgisee, (number density of particles and particles mass concentra-
e.g., Refs[1-7], and references thergistarting from the tion) advected by a homogeneous, isotropic, and compress-
seminal paper by Kraichndi8] where the equation for the ible turbulent flow with a given longitudinal two-point cor-
second-order correlation function of a passive scalar in th&elation function is performed. The dynamics of magnetic
s-correlated time approximation for a random incompressfield in a linear velocity field was studied in Refd0-13.
ible velocity field was derived. Recently a model of linear We demonstrated that a dynamics of the passive scalar field
velocity field was used to study a turbulent transport of aln @ linear velocity field is similar to the dynamics of a mag-
passive scalafsee, e.g., Ref§5,9], and references therein  netic field.
Employment of this simple model makes it possible to per-
form calculations in a closed form for a passive scalar. Note Il. GOVERNING EQUATIONS
that a model of a linear velocity field can be viewediasn
expansion in Taylor series of the velocity field in a local
frame of reference moving with a fluid element drigla real
flow field in an infinite spacde.g., similar to the Hubble
flow in cosmology. anlot+V-(nv)=DAn 1)
In this study we analyzed some peculiar aspects of a
transport of a passive scalar in a linear velocity field. Inwith an initial conditionn(t=0,r)=ny(r), whereD is the
particular, we studied the Cauchy problem for a passive scasoefficient of molecular diffusiony is a velocity field. We
lar in both laminar and random linear velocity fields. It is consider a kinematic problem, i.e., we study the dynamics of
shown that a spatial distribution of a passive scalar evolvea passive scalar in a prescribed linear velocity field
either into a thin infinite “pancake” or into an infinite =A;;x;. Any arbitrary matrix can be represented as a linear
“rope” structure. The properties of a passive scalar are simicombination of a matrix with a zero trace and a unit matrix,
lar for laminar and random incompressible linear velocityi.e., Ajj=C;;+ &;;(TrA/3), where TIC=C;; = 0. Direct cal-
fields. A compressibility of a fluid flow results in a nonzero culation  yields b=V-v=A;;(dx;/dx;)=A;5;;=TrA.
flux of particles from the infinity. For strong compressibility Therefore, the linear compressible velocity field can be rep-
a spatial distribution of a passive scalar evolves into a baltesented ag;=(C;; +bd;; /3)x;. Note that we do not con-
(or ellipsoid with very small radius which is of the order of sider this field as the first term in an expansion in Taylor
a molecular diffusion scale. We found that higher statisticakeries of the real velocity field. We also consider here only a
moments can grow exponentially in spite of a decay of asmooth linear velocity fielde.g., it is not as-correlated time
typical realization of a passive scalar. Such a strange behavelocity field. Since we study the kinematic problem we do
ior of a passive scalar demonstrates that transport of a paset discuss in this section the boundary conditions for the

The evolution of a passive scala.g., the number density
n(t,r) of small particle$in a compressible fluid flow is de-
termined by the equation
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velocity field at infinity. In a laminar steady velocity fie@;

andb are time independent while in a random linear velocity

field Cj;=C;;(t) and b=b(t). The solution of Eq.(1) is
given by

n(t,r)=f ni(t,ko)exik(t) - r1dke, (2)

where the wave vectde(t) is determined by the equation
dk/dt=—(CT+b/3)Kk, (3)

and ko=k(t=0) andC" is the matrix transpose t€ (in
general it is nondiagonal and time-dependent matiSub-
stituting Egs.(2) and(3) into Eq. (1) we obtain

dn;/dt=—[b-+DK?(t)]n;, 4

wheren;(t=0,kq) is a Fourier transformation of the initial

conditionng(r), i.e.,

no(r):f n¢(t=0,kg)expikq-r)dkg (5)

[see Egs(2)]. The fieldn(t,r) we calculate at the vicinity
r—o0 (i.e., forv—0). Solution of Eq.(1) in the form given
by Egs.(2)—(4) was found in Ref[10] for a magnetic field
advected by a linear velocity field.

IIl. INCOMPRESSIBLE LINEAR VELOCITY FIELD

First, we consider an incompressible=0) linear veloc-
ity field. The solution of Eq(4) for b=0 reads

nf(t, ko)znf(tZO,ko)eX[{—DJ'tkz(t’)dt'}, (6)
0

wherek(t) is given by
k(t)=exd — Ct]kg (7)

[see Eq.(3)]. For an arbitrary matrixC the matrix T
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exp(2c;t) 0 0
T@= 0 exg —cit) —texp—cyt) |,
0 0 exg —cyt)
0 0O 1 -t t%2
c®=({1 0 0], T®=|{0 1 -t
010 0 0 1

(see Ref[10]), where the matrixC™Y) corresponds to a case
with all different eigenvectors, the matri@® describes a
case with two equal eigenvalues and two independent eigen-
vectors, and the matri€® corresponds to a case with three
equal eigenvalues and one eigenvector. In all cases except
for the pure rotationd;=c3) at least of one element of the
matrix T grows with time. In all casegxcept for two cases
which are described by the matriX? with ¢;=0 or C®)
the growth of matrixT is exponential. The latter causes a
superexponential decay of the Fourier components of the
passive scalafsee below.

Indeed, let us consider a general case which is described
by the matriciesC® and T™™). We assume that, e.qc;>0
and c,>0. In this case the wave vectdr decays in the
directionse, and e;, and it increases in the directiogy
(wheree;, e, ande; are the eigenvectors of the matiy).
Equation(6) implies that the main contribution to the inte-
gral [{k?(t")dt" is due to the growing componeit(t).
From the instant which is determined by

t
Df K3(t")dt'<1, (8)
0

there is a superexponential decay of the Fourier components
of the passive scalar. For times which are smaller than the
time t the Fourier components of the passive scalar can be
considered as a constant. Equati{8n determines the range

of integration ink space for the integralln(t,ko)exdik(t)
-r]dkq in Eq. (2). The evaluation of this integral yields

n(t,r=0)~nfV(t), 9

=exp(—C't) can be calculated using the Jordan representa-
tion (see, e.g., Ref§15,16)). A Jordan form of a general 3 wheren} is the characteristic value of the Fourier compo-
X3 matrix C with TrC=0 and the corresponding matricies nent of the initial passive scalar field awg(t) is the volume

T are given by

—-c;—Cc, 0 O

ch=| 0 ¢ O],
0 0 ¢
exd (cy+co)t] 0 0
TO= 0 exp —c,t) 0 ,
0 0 exg —ct)
-2c;, 0 O
c@= 0 c; 0],
0 1 ¢

in k space. This volume can be estimated as follows. Substi-
tuting Eq.(7) into Eq. (8) and integrating yields

ok o K]
m{exd (citc)t]—1}+ 26, T2, 71

(10

where we neglected terms~k33exp(—c1t) and

~k2,exp(—c,t). On the other hand, the initial components
Koi, Koz, andkgs satisfy the inequality
kg1 + Ko+ kba=K3, (11)

wherek, is the maximum value of the wave number in the
initial distribution of the passive scalar. It follows from Egs.
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(10 and (11 that Koykes=ko and kog=[(c, and take into account thaT,=TI7_; T, where T(®

+¢,)/D]Y2ex — (c,+¢,)t]. Here we take into account that =T exd—J{;_1,,CT(t")dt'] are the random independent
exf 2(c;+c,)t]>1. Therefore the volume matrices which have the same statistical distributions and
detT(P=1. The properties of a product of random matricies
— 2 are described by the Furstenberg theor@me, e.g., Refs.
V(1) ~ korkozkoz= ko[ (€1 €2) /D] exd — (c1+ ¢)t]. [10,17-19). This theorem implies the existence of a random
(12) independent setH; ,E,,E3) in which the diagonal elements
T,. Of the product of random matrices grow exponentially,
Equations(9) and(12) yield ie.,

n(t,rZO)OCeX[{—(Cl-i— Cz)t]. (13) Taaocexq 7at+ natl/2+ te ')1 (16)

where 7, are Gaussian random variables, and the Lyapunov
exponentsy, satisfy the equationy; + y,+ y3=0, and v,

>0. The random independent s&;(,E,,E3) is determined

as follows. For a given realization of the matii%®) there is

Consider now the spatial structure of the solutigm,r) for
the passive scalar. Equation for the maffi) implies that
the wave vectok(t) grows in the directiore; and it decays
in the directionse, ande;. Therefore, the spatial scale of the

passive scalar field in the directiay decreases up to the & fandom numbem for which the producﬂg‘:lT(p)_ is di-
molecular diffusion scaléY~[D/(c;+c,)]¥2 On the other agonal in the random independent sEf (E,,E3) with the

hand, the spatial scalé®’ and|® of the passive scalar field accuracyO[exp(-am)], wherea>0. The independent set
in the directionse, and e; increase, i.e.|@~expe,t) and (Eq,E,,E3) varies from a realization to a reah'zatlon. We
|®)~exp(c,t). Thus, e.g., if the initial spatial distribution of €an apply the Furstenberg theorem to the matfix There-
the passive scalar has the form of a ball, it evolves into a thifor® Eas.(13) and(14) after the change;— y; are valid for
“pancake.” The thickness of the “pancake® 1), i.e., itis  the random linear velocity field a&7, i.e.,

determined by the molecular diffusion. Now we calculate the

total number of particlesl®)= [ndr~n(t,r=0)V,=const, n(t,r=0)cexgd — (y1+ y2)tl,

whereVr~Vk_1. We also estimate the higher moments of the

passive scalar fieldnPdr:
f nPdrocexd —(p—1)(y1+ y2)t].

P P(t 1= —(p—
j nPdroen®(t,r=0)Vrerex —(p=1)(c+C)t]. Thus whenp>1 the higher momentgnPdr decay. There-

(14  fore, the dynamics of the passive scalar in both random and
laminar incompressible linear velocity fields are similar.

Equation(14) shows that the moments of the passive scalar

field [nPdr decay whenp>1 and they grow wherp<1. IV. COMPRESSIBLE LINEAR VELOCITY FIELD
Equation(14) for p=1 implies the conservation of the total . . ) o
number of particles. Now we consider a compressible linear velocity field. In

In the casee;>0, ¢,<0, andc; +c,>0 the wave vector this case there is a growth of a Fourier cqmponent of the
k(t) grows in the direction®, ande,, and it decays in the Passive scalar wheh<0. Indeed, the solution of Eq4)
direction e. This results in that the passive scalar evolves€ads
into a long “rope.” A similar kind of solution for a passive
scalar was found if14] and for a passive vectdmagnetic s
field) in Refs.[11,12, Ni(t,Ko)=No ex —bt—DJOk (thdt', (A7)

Now we consider a random linear velocity field with a
constant renewal time. In this caseC is the random matrix.

The solution of Eq(3) is given by where the functiork(t) is given by

. k(t)=exp(|b|t/3)exd — CTt]k,.
k(t)=?exp[—J CT(t’)dt'}ko

0 Equation(8) in this case becomes
= lim M1 — CT(tm_ )AL, (15)

m— oo

t
bt+ Df K2(t")dt’' <1. (18
0

whereT ex — [{CT(t")dt'] implies the Volterra multiplica-

tive integral orT exponent(see, e.g., Refl15]). Note that Now we consider the case when the passive scalar evolves
Eg. (15 cannot be applied in a straightforward manner to ainto a ‘“pancake,” i.e., whenb<0, c¢c;>|b|/3, and c,
S-correlated time linear velocity field. We specif=mr  >|b|/3. The volumeV,(t) is given by
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— |b|\ /|bt+1)]*2 whereA(t) = [fb(t’)dt’. We assume thdi(t) is a Gaussian
Vi) kgl | €1t ot - D random process witlb)=0 and{b(t)b(t+ 7))=B(7). In
this case(A(t))=0 and(A(t)A(t))=[L/LB(t"—t")dt'dt”
|b| =2[LB(7)(t— 1)d7~2t7oB(0), where ro=/5B(7)d7/
xex;{ ~| Gt et 3 t- (19 B(0), andt> r,. Fort> 7 we use the Furstenberg theorem,

which yields
Therefore, the evolution of a passive scalar is determined by
n(t,r=0)ex([b|O) Vi(t)<([blt+ 1) 2 Ta LYol (ract PoPIHEEE- ] (26
20 whereB,=[27,B(0)]*2 and 3 is the Gaussian random pro-
' cess with zero mean value and a unit dispersion. Therefore

o (20
ex 3 €1 C
the compressibility does not affect essentially the realizations

The higher moments of the passive scalar fightPdr are  of a passive scalar field. Indeed, the voluiig decreases,
given by ie.,

t

f nPdroc(|blt+1)P~ 72 Vi(t)ex = yat = (m+ BoBI3H]. (27)

2p+1 i - 1/ ;
Xex;{( IO3 IB|— (p—1)(c,+c) t} Sincen(t,r=0)xn,V, andn,xexd ByAt 2] we obtain that

(21) n(t,r=0)xexy — yit— (71— 2BoBI3]. (28

Equation (21) implies that for p=1 the integral [ndr  Therefore for large the passive scalar field(t,r=0) de-

<exp(blt). Thus the total number of particles is not con- creases. The spatial distribution of a passive scalar evolves
served for a compressible linear velocity field. The reason fofntq either a “pancake” or a “rope.” On the other hand, this

this unphysical behavior is that the obtained spatial distribugg|q is homogeneous along a “rope” or inside a “pancake.”
tions of particles(in the form of “ropes™ or “pancake’)  Therefore, the passive scalar figl¢t,r) decreases also with

imply the nonzero inflow or outflow of particles from any ime Now we calculate the higher-order statistical moments
finite control volume.

Now we consider the case when the passive scalar 0 5
evolves into a “rope,” i.e., wherb<0, ¢,>|b|/3, andc, (nP)=exr (4Bop/9— y1)pt]. (29
<0 andc;+c,—b/3>0. The volumeV,(t) is given by
The latter equation shows that the higher-order statistical
v (t)oc( 1+ |b|t>exr{ B ( - ﬂH (22 moments can grow in time in spite of the decay of a typical
K 173 ' realization of the passive scalar field. Equati@f)) implies a
log-normal statistics for the passive scalar field.

V. DISCUSSION
n(t,r=0)«

and the functiom(t,r =0)xexp(blt)V,(t) is determined by
(23) . .
In this study we analyzed some peculiar aspects of a

1+|b|t> ( |b|>
5—|exA —| cim =7 t].

. transport of passive scalar in a linear laminar and random
Therefore the total number of particlegndr~n(t,r  yelocity fields. We demonstrated that all statistical moments
=0)/Vi(t)<exp(blt) is not conserved as well as in the pre- higher than the first moment and a typical realization of a
vious case. Whetfb|>[c;| (in this case the passive scalar passive scalar decay for both laminar and random incom-

distribution evolves into a “ball} the volume pressible linear velocity fields. Strong compressibility of a
blt) 32 laminar linear velocity field can result in a growth of a typi-

Vk(t)x(ﬂ exp(—|b|t), (24) cal realization and of the high_—_order moments of a p_asgive

D scalar. For strong compressibility a passive scalar distribu-

tion evolves into a ballor ellipsoid with very small radius
and the functiom(t,r = 0)=exp(blt)Vi(t)(|blt/D)*% and the  \yhich is of the order of a molecular diffusion scale.
total number of particlegndr ~n(t,r=0)/V,(t)=exp(blt). Now we will compare obtained results with those for a
Now we consider a random linear CompreSSible VeIOCitydynamiCS of a passive Sca|&number density of partic'es
field: v;=[C;;(t) +(1/3)b(t) 5;]x;, where the matrixC;;  (see Sec. VA and particles mass concentratiésee Sec.
andb are independent random processes. The solution of Eq/B)] in a homogeneous, isotropic and compressible turbu-
(3) for the wave vector is given by lent flow with a given longitudinal two-point correlation
. function F=1—r2. We also will compare the obtained re-
_ _ o _ T4t sults with those for the dynamics of a passive vec¢inag-
k(D) =expl A(t)/3)Texp{ J’OC (t)et }ko' @9 netic field advected by linear velocity fieltsee Sec. VEC
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A. Dynamics of particles number density in a homogeneous,  m(r) and, therefore, eigenfunctioni(r) are different. The
isotropic, and compressible turbulent flow functions ® and ®’ in these different regions can be

Consider first a passive scalie., the number density of matched at their boundary. Note that the most important part

particles advected by as-correlated time random velocity Of the solution is localized in small scalése., r<1). The
field. An equation for the second-order correlation function"®Sults obtained by this asymptotic analysis are presented

d=(0(x)0(y)) of particles concentration reads below. In region |, i.e., for &r=<1 the function y

=(26/3)m(r)r and «k=200/(1+0) and 1M=2(1
oD PP +X?)/Pe, wheres=(8c+1)/(1+30), X=(B,Pe)>r and
E:_2[D5pm+Dmn(o)—Dmn(r)]&Xmﬁyn Bm=(1+30)/3(1+ ). The potentialU(r) and the func-

tions W (r) and®(r) in this region are given by

oD
+2(7b(x)b(y))® —4(rvm(X)b(y)) vy '

5(5-2)
U=28| 8(5+1)~ - K,
(30) 1+ X?
(see Ref. [7]), where ®=n—N, r=y—x, and | V= (1+X)YL(X), D(r)=(1+X)H'L(X)/X, (34

=2(7b(x)b(y))N?, and D (r)={71v(X)vm(y)), and N ' _ _
=<r<1> ié t)he();r)1>ean numberpdensié/ ofpparticles? The correlawvhere L(X) =Re[A,P%(iX)+A,Q%(iX)} is a real part of
tion function of a compressible homogeneous and isotropi¢he complex functionP/#(Z) and Q4(Z) are the Legendre
random velocity field is given by functions with imaginary argumentZ=iX, A=o(o
—3)/2(1+30)?, u=6-1=50/(1+30), {=—1/2+ v,
(Vm(X)Vn(Y))= (U D[(F+Fo) Snt[rF'/(d=1)]Py,  and

+IF (31 v=(u—3122|9/2Bm. (35)

(see Ref. [20), where P,(r)=6mnn—"Tmn: mn  The correlation function has a global maximunrat0 and
=rorn/r?, F'=dF/dr, F(0)=1—F(0), disthe dimen- therefore it satisfies the conditiods’(r =0)=0, and®"(r

sionality of spaceu, is the characteristic velocity in the =0)<0, and ®(r=0)>|®(r>0)|. Condition ®(r=0)

maximum scale of turbulent motions. The functionF.(r) ~ =1 implies thatL (X=0)=0 andL’(X=0)=1. The func-
describes the potential component wherig@s) corresponds  tion @ for X<1 [i.e., for O<r<Pe "7 is given by d~1

to the vortical part of the turbulent velocity of particles. Con- —[(k— ¥)/128,][X*+O(X*)]. The function® for X>1

sider the case with=0. We seek a solution to E¢30) in  [i.e., for Pe *2<r<1] is given by

the form

O =X"*(AXI+AX9) (36)
r
(D(t,r)=\1f(r)r(1—d)/zeXL{ —J x(X) dx}equt), for v,>0, and
0

(32) d=X"%A;+A,InX) (37)

where the functiony is defined below. Consider three- f _ _ _ 2
. . A - o . or v,=0, where{,=+|v,| and a=(250°+240+3)/2(1
dimensional velocity field¢=3). Substituting Eq(32) into '3 32 ‘Note that in the model of the velocity field with

Eq. (30) yields an equation for the unknown functidn(r): For1—r2 the solutiond=BX~ “cos¢, In X-+¢y) in the range
X>1 for v,<0 does not exist. However, it can exist in the

' im(r)=[y+U(n]¥=0, 33 model of the velocity field withE =exp(~r?) (see Ref[20]).
where U(r)=m 2x/r+ x>+ x")—«(r), m (r) The solution of Eq(33) for 1<r<L, is given by
=(2/Pe)+(2/3)[1—F—(ch)’], X(r)=—m(r)(6Fé+F’ (I)=A3r’1sir[(L0—r) /3|')’|/2], (38)

+2rF)/3, k(r)=—2[8F /r+7F{+rF]/3, and dis-

tancer is measured in units df, timet is measured in units and whenr=L the correlation functionb=0.

of 7o=1g/ug, and Pe=lguy/D>1 is the Peclet number. We For the mode withy;=0 the damping rate of passive
consider a random velocity field withF(r)=(1—r?)/(1 scalar fluctuations is given by

+0), Fe(r)=0(1-r?)/(1+0) for 0<r=<1, and F(r)

—F(r)=0 for r>1, wherea={((V -v)2/{(V xV)?) is the (-3
degree of compressibility. Whem=0 the velocity field is v 6(1+o)(1+30)’
incompressible.

A solution of Eq. (33) can be obtained using an where we used Eq.35). Now we consider the mode with
asymptotic analysiésee, e.g., Ref$1,2,7,20). This analysis  »,>0. Matching the functionsb and ®' at the boundary
is based on the separation of scales. In particular, the solletween two regiongi.e., atr =1) yields the equation for
tion of the Schrdinger equation(33) with a variable mass ¢,. In particular, the matching of the functiords and @’
has two regions where the form of the potentilr), mass determined by Eq36) and(398) yields

(39
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F={a—1- [3[y]/2 cof (Lo—1)V3[y]/2]}2.  (40) qf particlg mass concentration in_ a ran(_jom Iineqr velo_city
field and in a homogeneous and isotropic three-dimensional

Using Egs.(35) and(40) we can obtain the damping rate of turbulent flow.
passive scalar fluctuations for the mode with-0. Equation Now we study the dynamics of mass concentration ad-
(39) for the damping rate of fluctuations of the number den-vected by a homogeneous, isotropic, and compressible tur-
sity of particles is different from that obtained in a linear bulent two-dimensional velocity field with a given longitudi-
velocity field[compare with Eq(29) for p=2]. nal two-point correlation functiof = 1—r2. An equation for

the second-order correlation functichy=(6(x)6(y)) of
B. Dynamics of particle mass concentration in a homogeneous, Mass concentration in two-dimensional turbulent velocity

isotropic, and compressible turbulent flow field reads

Now we consider the dynamics of mass concentration 07(1)0/0’)[:malq)6+((b(’)/r)(mal+r|:’—rF(’:), (43
A=myn/p, wherem, is the mass of particleg, is the den-
sity of fluid. An equation for the evolution of the mass con-where §=A—(A), mgl(r):(Z/Pe)-k 1-F—(rFp)’. We
centrationA in a compressible turbulent fluid flow reads seek a solution to Eq.(43) in the form ®q(t,r)

=Wo(r)r Y2exd — [Lxo(x)dx]lexp(t), where the unknown

oA+ (v-V)A=DAA. (41) function Wy(r) is determined by the equation
This equation follows from Eq(1) and the continuity equa- " B B
tion for a fluid: Wo/mo(r)—[y+Uo(r)]¥,=0, (44)
9plt+V - (pv)=0. Uo(r)=mg *(xo/r + x&+ xo— 1/4r?), and Xo(r)

=mo(r)(F'—F()/2. The asymptotic analysis shows
The dynamics of mass concentration advected by a homogéhat the correlation functiond, for O<r<Pe 2 is
neous, isotropic and compressible turbulent threegiven by ®,=Jo(Vh2)~1—(|y|/128,)Z? where Z
dimensional velocity field with a given longitudinal two- =[(3/2)BPel¥%, Jo(Z) is the Bessel function of the first
point correlation functiorF =1—r? was first studied in Ref. kind, h=2a+|vy|/38,, anda=(1—0c)/(1+30). The func-
[20]. It was shown that fluctuations of the mass concentration ®, for Z>1 [i.e., for Pe Y?><r<1] is given by ®
tion can be only damped. The damping rate of the two-point=B,Z* sin( In Z), where¢, =|y|/38n— a?, anda<0, i.e.,
correlation functiond® for fluctuations of the mass concen- o=1. For r>1 the correlation function is @,

tration is given by =B,Jo(V]YIr) +B3Yo(V]7Ir), whereYo(Z) is the Bessel
function of the second kind.
_ (A+30)[[ 0-3? (477(k+1/2))2} 42 Matching the functionsb, and ® at the boundary be-
Y 6(1+0)|\1+30 In(Pe tween two regions(i.e., atr=1) yields &=2wk/In(Pe),

_ wherek=1,2, ... .Therefore, the damping rate of the two-
(for details see Ref20]), where O<o<3. When the degree point correlation functiond, for fluctuations of the mass

of compressibility of the fluid flowr— 3 the damping rate of concentration in two-dimensional turbulent velocity field is
fluctuations of the mass concentration can be strongly regiven by

duced for large Peclet numbers. In REI0] this effect was

interpreted as a strong depletion of the scale-dependent tur- (1+30)
bulent diffusion caused by compressibility of fluid flow. Y= (1+0)
Later, a similar behavior was observed in the study of the

passive scalafmass concentratigradvected by a linear ran- whereo=1. When the degree of compressibility of the fluid
dom velocity field(see Ref[9]). In Ref.[9] this effect was  flow ¢— 1 the damping rate of fluctuations of the mass con-
interpreted as an inverse cascade which is caused by thentration can be strongly reduced for large Peclet numbers.
compressibility of a linear velocity field. It was found in Ref. The |atter implies the inverse cascade of mass concentration.
[9] that whend<4 and((V-Vv)?)/S*>d/4 the cascade of On the other hand, the condition for the inverse cascade of
the passive scalak is inverse; otherwise it is direct, where the mass concentration advected by two-dimensional turbu-
S*=((Viwm)?). Using Eq.(31) we get((V-v)*)=—d(d |ent linear velocity field obtained in Ref9] is o>1. This
+2)(Fl/r), o and S°=—d(d+2)[(F'+F{)/r], o, i.e, also demonstrates the difference between the dynamics of
((V-v)?)/S*=0/(1+ o). This implies that the condition for particles mass concentration in a random linear velocity field
the inverse cascade of the mass concentration>sd/(4  and in a homogeneous and isotropic two-dimensional turbu-
—d), whered<4. Thus, the condition for the inverse cas- lent flow.

cade of mass concentration advected by a linear random ve- The reason for the difference between the dynamics of a
locity field obtained in Ref.[9] is >3 (for three- passive scalainumber density of particles and particles mass
dimensional velocity fielJ ando>1 (for two-dimensional concentratiohin a random linear velocity field and the dy-
velocity field. On the other hand, the condition for the simi- namics of a passive scalar in a homogeneous and isotropic
lar phenomena for mass concentration advected by a homadrbulent flow with a given longitudinal two-point correla-
geneous, isotropic, and compressible turbulent flowsris tion functionF=1—r? is as follows. A linear velocity field

— 3. This demonstrates the difference between the dynamiadoes not have a correlation radius, whereas the velocity field

2 ( ZWk)Z
: (45

In(Pe

o—1
1+30
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with the correlation functioff =1—r2 has a unit correlation where » is the magnetic diffusion. A solution of E¢46) is
radius. A linear velocity field can be considered as an expansimilar to the solution which is determined by Eq8) and

sion in Taylor series of the velocity field in a local frame (3) (see Ref[10]). The analysis of the dynamics of magnetic
attached to the fluid element in the form—v?=cijrj . field in a linear velocity field demonstrates a behavior which
However, this expansion is local, while the dynamics of pards similar to the dynamics of the passive scalar field: typical
ticles in a linear velocity field is not local. Indeed, all par- realization of magnetic field decays and the higher-order sta-
ticles are carried out from any small volume during a finitetistical momentsf|H|Pdr can grow if p<p, , where a
time. On the other hand, particles from other locations flowthresholdp, depends orm;. The behavior of both magnetic
into a given local volume. This outflow and inflow determine field and passive scalar field in a random and a laminar ve-
the nonlocal dynamics of particles. In addition, a linear ve-locity field is similar. The difference between the dynamics
locity field is not homogeneous since rat>o the velocity — of a magnetic field and a passive scalar field is that, e.g., the
vi—. If we consider matching of the solution for a passivethresholdp, for a passive scalar in the incompressible linear
scalar in a linear velocity field; —v?=C;;r; (which is valid  velocity field is independent of;, i.e., p, =1. This differ-

for smallr) with a solution for a passive scalar which vanish €nce is caused by that the magnetic field is a divergence-free

at the infinity, the final results can depend on the matching/ector field and opposite-directed magnetic field lines anni-
procedure. hilate when they approach each other.
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