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Strange behavior of a passive scalar in a linear velocity field
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Damping ~or growth! rates of a typical realization, mean-field and high-order correlation functions of a
passive scalar~e.g., a number density of particles! advected by a linear velocity fields are estimated. It is shown
that all statistical moments higher than the first moment and a typical realization of a passive scalar without an
external pumping decay for both laminar and random incompressible linear velocity fields. Strong compress-
ibility of a laminar linear velocity field can result in a growth of a typical realization and the high-order
moments of a passive scalar. It is demonstrated that for a laminar compressible linear velocity field the flux of
particles from the infinity does not vanish and the total number of particles is not conserved. For a random
compressible linear velocity field a typical realization decays whereas the high-order moments of a passive
scalar can grow. Comparison of the obtained results with those for dynamics of a passive scalar advected by a
homogeneous isotropic and compressible turbulent flow with a given longitudinal two-point correlation func-
tion F512r 2 is performed~wherer is the distance between two points measured in the units of the maximum
scale of turbulent motions!.
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I. INTRODUCTION

Fluctuations of a passive scalar advected by a turbu
velocity field were studied in a number of publications~see,
e.g., Refs.@1–7#, and references therein! starting from the
seminal paper by Kraichnan@8# where the equation for the
second-order correlation function of a passive scalar in
d-correlated time approximation for a random incompre
ible velocity field was derived. Recently a model of line
velocity field was used to study a turbulent transport o
passive scalar~see, e.g., Refs.@5,9#, and references therein!.
Employment of this simple model makes it possible to p
form calculations in a closed form for a passive scalar. N
that a model of a linear velocity field can be viewed as~i! an
expansion in Taylor series of the velocity field in a loc
frame of reference moving with a fluid element and~ii ! a real
flow field in an infinite space~e.g., similar to the Hubble
flow in cosmology!.

In this study we analyzed some peculiar aspects o
transport of a passive scalar in a linear velocity field.
particular, we studied the Cauchy problem for a passive s
lar in both laminar and random linear velocity fields. It
shown that a spatial distribution of a passive scalar evo
either into a thin infinite ‘‘pancake’’ or into an infinite
‘‘rope’’ structure. The properties of a passive scalar are si
lar for laminar and random incompressible linear veloc
fields. A compressibility of a fluid flow results in a nonze
flux of particles from the infinity. For strong compressibili
a spatial distribution of a passive scalar evolves into a
~or ellipsoid! with very small radius which is of the order o
a molecular diffusion scale. We found that higher statisti
moments can grow exponentially in spite of a decay o
typical realization of a passive scalar. Such a strange be
ior of a passive scalar demonstrates that transport of a
1063-651X/2001/63~4!/046305~7!/$20.00 63 0463
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sive scalar in linear velocity field cannot be considered a
general and universal phenomenon. Comparison of the
tained results with those for dynamics of a passive sc
~number density of particles and particles mass concen
tion! advected by a homogeneous, isotropic, and compr
ible turbulent flow with a given longitudinal two-point cor
relation function is performed. The dynamics of magne
field in a linear velocity field was studied in Refs.@10–13#.
We demonstrated that a dynamics of the passive scalar
in a linear velocity field is similar to the dynamics of a ma
netic field.

II. GOVERNING EQUATIONS

The evolution of a passive scalar@e.g., the number density
n(t,r ) of small particles# in a compressible fluid flow is de
termined by the equation

]n/]t1“•~nv!5DDn ~1!

with an initial conditionn(t50,r )5n0(r ), whereD is the
coefficient of molecular diffusion,v is a velocity field. We
consider a kinematic problem, i.e., we study the dynamics
a passive scalar in a prescribed linear velocity fieldv i
5Ai j xj . Any arbitrary matrix can be represented as a line
combination of a matrix with a zero trace and a unit matr
i.e., Ai j 5Ci j 1d i j (Tr A/3), where TrC5Cii 50. Direct cal-
culation yields b[“•v5Ai j (]xi /]xj )5Ai j d i j 5Tr A.
Therefore, the linear compressible velocity field can be r
resented asv i5(Ci j 1bd i j /3)xj . Note that we do not con-
sider this field as the first term in an expansion in Tay
series of the real velocity field. We also consider here onl
smooth linear velocity field~e.g., it is not ad-correlated time
velocity field!. Since we study the kinematic problem we d
not discuss in this section the boundary conditions for
©2001 The American Physical Society05-1
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velocity field at infinity. In a laminar steady velocity fieldCi j
andb are time independent while in a random linear veloc
field Ci j 5Ci j (t) and b5b(t). The solution of Eq.~1! is
given by

n~ t,r !5E nf~ t,k0!exp@ ik~ t !•r #dk0 , ~2!

where the wave vectork(t) is determined by the equation

dk/dt52~CT1b/3!k, ~3!

and k05k(t50) and CT is the matrix transpose toC ~in
general it is nondiagonal and time-dependent matrix!. Sub-
stituting Eqs.~2! and ~3! into Eq. ~1! we obtain

dnf /dt52@b1Dk2~ t !#nf , ~4!

wherenf(t50,k0) is a Fourier transformation of the initia
conditionn0(r ), i.e.,

n0~r !5E nf~ t50,k0!exp~ ik0•r !dk0 ~5!

@see Eqs.~2!#. The fieldn(t,r ) we calculate at the vicinity
r→0 ~i.e., for v→0). Solution of Eq.~1! in the form given
by Eqs.~2!–~4! was found in Ref.@10# for a magnetic field
advected by a linear velocity field.

III. INCOMPRESSIBLE LINEAR VELOCITY FIELD

First, we consider an incompressible (b50) linear veloc-
ity field. The solution of Eq.~4! for b50 reads

nf~ t, k0!5nf~ t50,k0!expF2DE
0

t

k2~ t8!dt8G , ~6!

wherek(t) is given by

k~ t !5exp@2CTt#k0 ~7!

@see Eq. ~3!#. For an arbitrary matrixC the matrix T
5exp(2CTt) can be calculated using the Jordan represe
tion ~see, e.g., Refs.@15,16#!. A Jordan form of a general 3
33 matrix C with Tr C50 and the corresponding matricie
T are given by

C(1)5S 2c12c2 0 0

0 c2 0

0 0 c1

D ,

T(1)5S exp@~c11c2!t# 0 0

0 exp~2c2t ! 0

0 0 exp~2c1t !
D ,

C(2)5S 22c1 0 0

0 c1 0

0 1 c1

D ,
04630
a-

T(2)5S exp~2c1t ! 0 0

0 exp~2c1t ! 2t exp~2c1t !

0 0 exp~2c1t !
D ,

C(3)5S 0 0 0

1 0 0

0 1 0
D , T(3)5S 1 2t t2/2

0 1 2t

0 0 1
D

~see Ref.@10#!, where the matrixC(1) corresponds to a cas
with all different eigenvectors, the matrixC(2) describes a
case with two equal eigenvalues and two independent eig
vectors, and the matrixC(3) corresponds to a case with thre
equal eigenvalues and one eigenvector. In all cases ex
for the pure rotation (c15c2* ) at least of one element of th
matrix T grows with time. In all cases~except for two cases
which are described by the matrixC(2) with c150 or C(3))
the growth of matrixT is exponential. The latter causes
superexponential decay of the Fourier components of
passive scalar~see below!.

Indeed, let us consider a general case which is descr
by the matriciesC(1) andT(1). We assume that, e.g.,c1.0
and c2.0. In this case the wave vectork decays in the
directions e2 and e3, and it increases in the directione1
~wheree1 , e2 ande3 are the eigenvectors of the matrixC).
Equation~6! implies that the main contribution to the inte
gral *0

t k2(t8)dt8 is due to the growing componentk1(t).
From the instantt which is determined by

DE
0

t

k2~ t8!dt8<1, ~8!

there is a superexponential decay of the Fourier compon
of the passive scalar. For times which are smaller than
time t the Fourier components of the passive scalar can
considered as a constant. Equation~8! determines the range
of integration ink space for the integral*nf(t,k0)exp@ik(t)
•r #dk0 in Eq. ~2!. The evaluation of this integral yields

n~ t,r50!;nf* Vk~ t !, ~9!

wherenf* is the characteristic value of the Fourier comp
nent of the initial passive scalar field andVk(t) is the volume
in k space. This volume can be estimated as follows. Sub
tuting Eq.~7! into Eq. ~8! and integrating yields

DF k01
2

2~c11c2!
$exp@2~c11c2!t#21%1

k02
2

2c2
1

k03
2

2c1
G;1,

~10!

where we neglected terms ;k03
2 exp(2c1t) and

;k02
2 exp(2c2t). On the other hand, the initial componen

k01, k02, andk03 satisfy the inequality

k01
2 1k02

2 1k03
2 < k̄0

2 , ~11!

wherek̄0 is the maximum value of the wave number in th
initial distribution of the passive scalar. It follows from Eq
5-2
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~10! and ~11! that k02;k03< k̄0 and k01<@(c1

1c2)/D#1/2exp@2(c11c2)t#. Here we take into account tha
exp@2(c11c2)t#@1. Therefore the volume

Vk~ t !;k01k02k03} k̄0
2@~c11c2!/D#1/2exp@2~c11c2!t#.

~12!

Equations~9! and ~12! yield

n~ t,r50!}exp@2~c11c2!t#. ~13!

Consider now the spatial structure of the solutionn(t,r ) for
the passive scalar. Equation for the matrixT(1) implies that
the wave vectork(t) grows in the directione1 and it decays
in the directionse2 ande3. Therefore, the spatial scale of th
passive scalar field in the directione1 decreases up to th
molecular diffusion scalel (1);@D/(c11c2)#1/2. On the other
hand, the spatial scalesl (2) andl (3) of the passive scalar field
in the directionse2 and e3 increase, i.e.,l (2);exp(c2t) and
l (3);exp(c1t). Thus, e.g., if the initial spatial distribution o
the passive scalar has the form of a ball, it evolves into a
‘‘pancake.’’ The thickness of the ‘‘pancake’’; l (1), i.e., it is
determined by the molecular diffusion. Now we calculate
total number of particlesN(tot)5*ndr;n(t,r50)Vr5const,
whereVr;Vk

21 . We also estimate the higher moments of t
passive scalar field*npdr :

E npdr}np~ t,r50!Vr}exp@2~p21!~c11c2!t#.

~14!

Equation~14! shows that the moments of the passive sca
field *npdr decay whenp.1 and they grow whenp,1.
Equation~14! for p51 implies the conservation of the tota
number of particles.

In the casec1.0, c2,0, andc11c2.0 the wave vector
k(t) grows in the directionse1 ande2, and it decays in the
direction e3. This results in that the passive scalar evolv
into a long ‘‘rope.’’ A similar kind of solution for a passive
scalar was found in@14# and for a passive vector~magnetic
field! in Refs.@11,12#.

Now we consider a random linear velocity field with
constant renewal timet. In this caseC is the random matrix.
The solution of Eq.~3! is given by

k~ t !5T̂expF2E
0

t

CT~ t8!dt8Gk0

5 lim
m→`

P i 50
m21@ I2CT~ tm2 i !Dt#, ~15!

whereT̂ exp@2*0
t CT(t8)dt8# implies the Volterra multiplica-

tive integral orT exponent~see, e.g., Ref.@15#!. Note that
Eq. ~15! cannot be applied in a straightforward manner to
d-correlated time linear velocity field. We specifyt5mt
04630
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and take into account thatTt5Pp51
m T(p), where T(p)

5T̂ exp@2*(p21)t
pt CT(t8)dt8# are the random independen

matrices which have the same statistical distributions
detT(p)51. The properties of a product of random matrici
are described by the Furstenberg theorem~see, e.g., Refs
@10,17–19#!. This theorem implies the existence of a rando
independent set (E1 ,E2 ,E3) in which the diagonal element
Taa of the product of random matrices grow exponential
i.e.,

Taa}exp~gat1hat1/21••• !, ~16!

whereha are Gaussian random variables, and the Lyapu
exponentsga satisfy the equationg11g21g350, andg1
.0. The random independent set (E1 ,E2 ,E3) is determined
as follows. For a given realization of the matrixT(p) there is
a random numberm for which the productPp51

m T(p) is di-
agonal in the random independent set (E1 ,E2 ,E3) with the
accuracyO@exp(2am)#, where a.0. The independent se
(E1 ,E2 ,E3) varies from a realization to a realization. W
can apply the Furstenberg theorem to the matrixTt . There-
fore Eqs.~13! and~14! after the changeci→g i are valid for
the random linear velocity field att@t, i.e.,

n~ t,r50!}exp@2~g11g2!t#,

E npdr}exp@2~p21!~g11g2!t#.

Thus whenp.1 the higher moments*npdr decay. There-
fore, the dynamics of the passive scalar in both random
laminar incompressible linear velocity fields are similar.

IV. COMPRESSIBLE LINEAR VELOCITY FIELD

Now we consider a compressible linear velocity field.
this case there is a growth of a Fourier component of
passive scalar whenb,0. Indeed, the solution of Eq.~4!
reads

nf~ t,k0!5n0 expF2bt2DE
0

t

k2~ t8!dt8G , ~17!

where the functionk(t) is given by

k~ t !5exp~ ubut/3!exp@2CTt#k0.

Equation~8! in this case becomes

bt1DE
0

t

k2~ t8!dt8<1. ~18!

Now we consider the case when the passive scalar evo
into a ‘‘pancake,’’ i.e., whenb,0, c1.ubu/3, and c2
.ubu/3. The volumeVk(t) is given by
5-3
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Vk~ t !} k̄0
2F S c11c21

ubu
3 D S ubut11

D D G1/2

3expF2S c11c21
ubu
3 D t G . ~19!

Therefore, the evolution of a passive scalar is determined

n~ t,r50!}exp~ ubut !Vk~ t !}~ ubut11!1/2

3expF S 2ubu
3

2c12c2D t G . ~20!

The higher moments of the passive scalar field*npdr are
given by

E npdr}~ ubut11!(p21)/2

3expF S 2p11

3
uBu2~p21!~c11c2! D t G .

~21!

Equation ~21! implies that for p51 the integral *ndr
}exp(ubut). Thus the total number of particles is not co
served for a compressible linear velocity field. The reason
this unphysical behavior is that the obtained spatial distri
tions of particles~in the form of ‘‘ropes’’ or ‘‘pancake’’!
imply the nonzero inflow or outflow of particles from an
finite control volume.

Now we consider the case when the passive sc
evolves into a ‘‘rope,’’ i.e., whenb,0, c1.ubu/3, andc2
,0 andc11c22b/3.0. The volumeVk(t) is given by

Vk~ t !}S 11ubut
D DexpF2S c11

2ubu
3 D t G , ~22!

and the functionn(t,r50)}exp(ubut)Vk(t) is determined by

n~ t,r50!}S 11ubut
D DexpF2S c12

ubu
3 D t G . ~23!

Therefore the total number of particles*ndr;n(t,r
50)/Vk(t)}exp(ubut) is not conserved as well as in the pr
vious case. Whenubu@uci u ~in this case the passive scal
distribution evolves into a ‘‘ball’’! the volume

Vk~ t !}S ubut
D D 3/2

exp~2ubut !, ~24!

and the functionn(t,r50)}exp(ubut)Vk(t)}(ubut/D)3/2, and the
total number of particles*ndr;n(t,r50)/Vk(t)}exp(ubut).

Now we consider a random linear compressible veloc
field: v i5@Ci j (t)1(1/3)b(t)d i j #xj , where the matrixCi j
andb are independent random processes. The solution of
~3! for the wave vector is given by

k~ t !5exp~2A~ t !/3!T̂ expF2E
0

t

CT~ t8!dt8Gk0 , ~25!
04630
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whereA(t)5*0
t b(t8)dt8. We assume thatb(t) is a Gaussian

random process witĥb&50 and ^b(t)b(t1t)&5B(t). In
this casê A(t)&50 and ^A(t)A(t)&5*0

t *0
t B(t92t8)dt8dt9

52*0
t B(t)(t2t)dt;2tt0B(0), where t05*0

`B(t)dt/
B(0), andt@t0. For t@t we use the Furstenberg theorem
which yields

Taa}exp@gat1~ha1b0b/3!t1/21•••#, ~26!

whereb05@2t0B(0)#1/2 andb is the Gaussian random pro
cess with zero mean value and a unit dispersion. There
the compressibility does not affect essentially the realizati
of a passive scalar field. Indeed, the volumeVk decreases,
i.e.,

Vk~ t !}exp@2g1t2~h11b0b/3!t1/2#. ~27!

Sincen(t,r50)}ngVk andng}exp@b0bt1/2# we obtain that

n~ t,r50!}exp@2g1t2~h122b0b/3!t1/2#. ~28!

Therefore for larget the passive scalar fieldn(t,r50) de-
creases. The spatial distribution of a passive scalar evo
into either a ‘‘pancake’’ or a ‘‘rope.’’ On the other hand, th
field is homogeneous along a ‘‘rope’’ or inside a ‘‘pancake
Therefore, the passive scalar fieldn(t,r ) decreases also with
time. Now we calculate the higher-order statistical mome

^np&>exp@~4b0
2p/92g1!pt#. ~29!

The latter equation shows that the higher-order statist
moments can grow in time in spite of the decay of a typi
realization of the passive scalar field. Equation~29! implies a
log-normal statistics for the passive scalar field.

V. DISCUSSION

In this study we analyzed some peculiar aspects o
transport of passive scalar in a linear laminar and rand
velocity fields. We demonstrated that all statistical mome
higher than the first moment and a typical realization o
passive scalar decay for both laminar and random inco
pressible linear velocity fields. Strong compressibility of
laminar linear velocity field can result in a growth of a typ
cal realization and of the high-order moments of a pass
scalar. For strong compressibility a passive scalar distri
tion evolves into a ball~or ellipsoid! with very small radius
which is of the order of a molecular diffusion scale.

Now we will compare obtained results with those for
dynamics of a passive scalar@number density of particles
~see Sec. V A! and particles mass concentration~see Sec.
V B!# in a homogeneous, isotropic and compressible tur
lent flow with a given longitudinal two-point correlatio
function F512r 2. We also will compare the obtained re
sults with those for the dynamics of a passive vector~mag-
netic field! advected by linear velocity field~see Sec. V C!.
5-4
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A. Dynamics of particles number density in a homogeneous,
isotropic, and compressible turbulent flow

Consider first a passive scalar~i.e., the number density o
particles! advected by ad-correlated time random velocit
field. An equation for the second-order correlation functi
F5^Q(x)Q(y)& of particles concentration reads

]F

]t
522@Ddpm1Dmn~0!2Dmn~r !#

]2F

]xm]yn

12^tb~x!b~y!&F24^tvm~x!b~y!&
]F

]ym
1I

~30!

~see Ref. @7#!, where Q5n2N, r5y2x, and I
52^tb(x)b(y)&N2, and Dpm(r )5^tvp(x)vm(y)&, and N
5^n& is the mean number density of particles. The corre
tion function of a compressible homogeneous and isotro
random velocity field is given by

^vm~x!vn~y!&5~u0
2/d!@~F1Fc!dmn1@rF 8/~d21!#Pmn

1rF c8r mn# ~31!

~see Ref. @20#!, where Pmn(r )5dmn2r mn , r mn
5r mr n /r 2, F85dF/dr, F(0)512Fc(0), d is the dimen-
sionality of space,u0 is the characteristic velocity in th
maximum scale of turbulent motionsl 0. The functionFc(r )
describes the potential component whereasF(r ) corresponds
to the vortical part of the turbulent velocity of particles. Co
sider the case withI 50. We seek a solution to Eq.~30! in
the form

F~ t,r !5C~r !r (12d)/2expF2E
0

r

x~x! dxGexp~gt !,

~32!

where the functionx is defined below. Consider three
dimensional velocity field (d53). Substituting Eq.~32! into
Eq. ~30! yields an equation for the unknown functionC(r ):

C9/m~r !2@g1U~r !#C50, ~33!

where U(r )5m21(2x/r 1x21x8)2k(r ), m21(r )
5(2/Pe)1(2/3)@12F2(rF c)8#, x(r )52m(r )(6Fc81F8
12rF c9)/3, k(r )522@8Fc8/r 17Fc91rF c-#/3, and dis-
tancer is measured in units ofl 0, time t is measured in units
of t05 l 0 /u0, and Pe5 l 0u0 /D@1 is the Peclet number. W
consider a random velocity field withF(r )5(12r 2)/(1
1s), Fc(r )5s(12r 2)/(11s) for 0<r<1, and F(r )
5Fc(r )50 for r .1, wheres5^(“•v)2&/^(“3v)2& is the
degree of compressibility. Whens50 the velocity field is
incompressible.

A solution of Eq. ~33! can be obtained using a
asymptotic analysis~see, e.g., Refs.@1,2,7,20#!. This analysis
is based on the separation of scales. In particular, the s
tion of the Schro¨dinger equation~33! with a variable mass
has two regions where the form of the potentialU(r ), mass
04630
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m(r ) and, therefore, eigenfunctionsC(r ) are different. The
functions F and F8 in these different regions can b
matched at their boundary. Note that the most important p
of the solution is localized in small scales~i.e., r !1). The
results obtained by this asymptotic analysis are prese
below. In region I, i.e., for 0<r<1 the function x
5(2d/3)m(r )r and k520s/(11s) and 1/m52(1
1X2)/Pe, whered5(8s11)/(113s), X5(bmPe)1/2r and
bm5(113s)/3(11s). The potentialU(r ) and the func-
tions C(r ) andF(r ) in this region are given by

U52bmFd~d11!2
d~d22!

11X2 G2k,

C5~11X2!1/2L~X!, F~r !5~11X2!lL~X!/X, ~34!

where L(X)5Re$A1Pz
m( iX)1A2Qz

m( iX)% is a real part of
the complex function,Pz

m(Z) and Qz
m(Z) are the Legendre

functions with imaginary argumentZ5 iX, l5s(s
23)/2(113s)2, m5d2155s/(113s), z521/21An I ,
and

n I5~m23/2!22ugu/2bm . ~35!

The correlation function has a global maximum atr 50 and
therefore it satisfies the conditionsF8(r 50)50, andF9(r
50),0, and F(r 50).uF(r .0)u. Condition F(r 50)
51 implies thatL(X50)50 andL8(X50)51. The func-
tion F for X!1 @i.e., for 0<r !Pe21/2] is given by F;1
2@(k2g)/12bm#@X21O(X4)#. The functionF for X@1
@i.e., for Pe21/2!r<1] is given by

F5X2a~Ã1Xz I1Ã2X2z I ! ~36!

for n I.0, and

F5X2a~Â11Â2 ln X! ~37!

for n I50, where z I5Aun I u and a5(25s2124s13)/2(1
13s)2. Note that in the model of the velocity field with
F}12r 2 the solutionF5BX2acos(zI ln X1w1) in the range
X@1 for n I,0 does not exist. However, it can exist in th
model of the velocity field withF}exp(2r2) ~see Ref.@20#!.
The solution of Eq.~33! for 1,r ,L0 is given by

F5A3r 21 sin@~L02r !A3ugu/2#, ~38!

and whenr>L0 the correlation functionF50.
For the mode withn I50 the damping rate of passiv

scalar fluctuations is given by

g52
~s23!2

6~11s!~113s!
, ~39!

where we used Eq.~35!. Now we consider the mode with
n I.0. Matching the functionsF and F8 at the boundary
between two regions~i.e., at r 51) yields the equation for
z I . In particular, the matching of the functionsF and F8
determined by Eqs.~36! and ~38! yields
5-5
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z I
25$a212A3ugu/2 cot@~L021!A3ugu/2#%2. ~40!

Using Eqs.~35! and ~40! we can obtain the damping rate o
passive scalar fluctuations for the mode withn I.0. Equation
~39! for the damping rate of fluctuations of the number de
sity of particles is different from that obtained in a line
velocity field @compare with Eq.~29! for p52].

B. Dynamics of particle mass concentration in a homogeneous
isotropic, and compressible turbulent flow

Now we consider the dynamics of mass concentrat
A5mpn/r, wheremp is the mass of particles,r is the den-
sity of fluid. An equation for the evolution of the mass co
centrationA in a compressible turbulent fluid flow reads

]A/]t1~v•“ !A5DDA. ~41!

This equation follows from Eq.~1! and the continuity equa
tion for a fluid:

]r/]t1“•~rv!50.

The dynamics of mass concentration advected by a hom
neous, isotropic and compressible turbulent thr
dimensional velocity field with a given longitudinal two
point correlation functionF512r 2 was first studied in Ref.
@20#. It was shown that fluctuations of the mass concen
tion can be only damped. The damping rate of the two-po
correlation functionF for fluctuations of the mass concen
tration is given by

g52
~113s!

6~11s! F S s23

113s D 2

1S 4p~k11/2!

ln~Pe! D 2G ~42!

~for details see Ref.@20#!, where 0<s<3. When the degree
of compressibility of the fluid flows→3 the damping rate o
fluctuations of the mass concentration can be strongly
duced for large Peclet numbers. In Ref.@20# this effect was
interpreted as a strong depletion of the scale-dependent
bulent diffusion caused by compressibility of fluid flow
Later, a similar behavior was observed in the study of
passive scalar~mass concentration! advected by a linear ran
dom velocity field~see Ref.@9#!. In Ref. @9# this effect was
interpreted as an inverse cascade which is caused by
compressibility of a linear velocity field. It was found in Re
@9# that whend,4 and ^(“•v)2&/S2.d/4 the cascade o
the passive scalarA is inverse; otherwise it is direct, wher
S25^(“kvm)2&. Using Eq. ~31! we get ^(“•v)2&52d(d
12)(Fc8/r ) r→0 and S252d(d12)@(F81Fc8)/r # r→0, i.e.,
^(“•v)2&/S25s/(11s). This implies that the condition fo
the inverse cascade of the mass concentration iss.d/(4
2d), whered,4. Thus, the condition for the inverse ca
cade of mass concentration advected by a linear random
locity field obtained in Ref. @9# is s.3 ~for three-
dimensional velocity field!, ands.1 ~for two-dimensional
velocity field!. On the other hand, the condition for the sim
lar phenomena for mass concentration advected by a ho
geneous, isotropic, and compressible turbulent flow iss
→3. This demonstrates the difference between the dynam
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of particle mass concentration in a random linear veloc
field and in a homogeneous and isotropic three-dimensio
turbulent flow.

Now we study the dynamics of mass concentration
vected by a homogeneous, isotropic, and compressible
bulent two-dimensional velocity field with a given longitud
nal two-point correlation functionF512r 2. An equation for
the second-order correlation functionF05^u(x)u(y)& of
mass concentration in two-dimensional turbulent veloc
field reads

]F0 /]t5m0
21F091~F08/r !~m0

211rF 82rF c8!, ~43!

where u5A2^A&, m0
21(r )5(2/Pe)112F2(rF c)8. We

seek a solution to Eq.~43! in the form F0(t,r )
5C0(r )r 21/2exp@2*0

rx0(x)dx#exp(gt), where the unknown
function C0(r ) is determined by the equation

C09/m0~r !2@g1U0~r !#C050, ~44!

U0(r )5m0
21(x0 /r 1x0

21x0821/4r 2), and x0(r )
5m0(r )(F82Fc8)/2. The asymptotic analysis show
that the correlation functionF0 for 0<r !Pe21/2 is
given by F05J0(AhZ);12(ugu/12bm)Z2, where Z
5@(3/2)bmPe#1/2r , J0(Z) is the Bessel function of the firs
kind, h52a1ugu/3bm anda5(12s)/(113s). The func-
tion F0 for Z@1 @i.e., for Pe21/2!r<1] is given by F
5B1Za sin(jI ln Z), wherej I5ugu/3bm2a2, anda<0, i.e.,
s>1. For r .1 the correlation function is F0

5B2J0(Augur )1B3Y0(Augur ), where Y0(Z) is the Bessel
function of the second kind.

Matching the functionsF0 and F08 at the boundary be-
tween two regions~i.e., at r 51) yields j I52pk/ ln(Pe),
wherek51,2, . . . .Therefore, the damping rate of the two
point correlation functionF0 for fluctuations of the mass
concentration in two-dimensional turbulent velocity field
given by

g52
~113s!

~11s! F S s21

113s D 2

1S 2pk

ln~Pe! D
2G , ~45!

wheres>1. When the degree of compressibility of the flu
flow s→1 the damping rate of fluctuations of the mass co
centration can be strongly reduced for large Peclet numb
The latter implies the inverse cascade of mass concentra
On the other hand, the condition for the inverse cascad
the mass concentration advected by two-dimensional tu
lent linear velocity field obtained in Ref.@9# is s.1. This
also demonstrates the difference between the dynamic
particles mass concentration in a random linear velocity fi
and in a homogeneous and isotropic two-dimensional tur
lent flow.

The reason for the difference between the dynamics o
passive scalar~number density of particles and particles ma
concentration! in a random linear velocity field and the dy
namics of a passive scalar in a homogeneous and isotr
turbulent flow with a given longitudinal two-point correla
tion functionF512r 2 is as follows. A linear velocity field
does not have a correlation radius, whereas the velocity fi
5-6
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with the correlation functionF512r 2 has a unit correlation
radius. A linear velocity field can be considered as an exp
sion in Taylor series of the velocity field in a local fram
attached to the fluid element in the formv i2v i

05Ci j r j .
However, this expansion is local, while the dynamics of p
ticles in a linear velocity field is not local. Indeed, all pa
ticles are carried out from any small volume during a fin
time. On the other hand, particles from other locations fl
into a given local volume. This outflow and inflow determin
the nonlocal dynamics of particles. In addition, a linear v
locity field is not homogeneous since atr→` the velocity
v i→`. If we consider matching of the solution for a passi
scalar in a linear velocity fieldv i2v i

05Ci j r j ~which is valid
for small r ) with a solution for a passive scalar which vani
at the infinity, the final results can depend on the match
procedure.

C. Dynamics of a magnetic field in a linear velocity field

Now, we compare the obtained results for a passive sc
with those for the dynamics of magnetic field in a line
velocity field @10–13#. The magnetic fieldH is determined
by the induction equation

]Hi /]t1~v•“ !Hi5~H•“ !v i1hDHi , ~46!
d

,

tt

tt

v.

04630
n-

-

-

g

lar

whereh is the magnetic diffusion. A solution of Eq.~46! is
similar to the solution which is determined by Eqs.~2! and
~3! ~see Ref.@10#!. The analysis of the dynamics of magnet
field in a linear velocity field demonstrates a behavior wh
is similar to the dynamics of the passive scalar field: typi
realization of magnetic field decays and the higher-order
tistical moments* uHupdr can grow if p,p* , where a
thresholdp* depends oncj . The behavior of both magneti
field and passive scalar field in a random and a laminar
locity field is similar. The difference between the dynami
of a magnetic field and a passive scalar field is that, e.g.,
thresholdp* for a passive scalar in the incompressible line
velocity field is independent ofcj , i.e., p* 51. This differ-
ence is caused by that the magnetic field is a divergence-
vector field and opposite-directed magnetic field lines an
hilate when they approach each other.
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